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ABSTRACT

It is clear that computer software is needed to assist in the

generation of the equations of motion for complex, flexible

spacecraft. Daniel Poelaert of ESTEC has developed the software

DISTEL with which he has modeled the structural dynamics for

different satellites. He is interested in expanding the capabilities of

DISTEL to include structural damping and control systems.

Unfortunately, the software has not been released. The author has

developed similar software, PDEMOD, which has been used to model

the Spacecraft control Laboratory Experiment (SCOLE), the Solar

Array Flight Experiment (SAFE), the Mini-MAST truss, and the LACE

satellite. PDEMOD has been used also for optimal parameter

estimation and integrated control-structures design. PDEMOD is also

being extended to include structural damping and control systems

which are imbedded into the same equations for the structural

dynamics.

This paper will address the formulation of the equations for the

structural dynamics of spacecraft structures which are constructed of

a 3-dimensional arrangement of rigid bodies and flexible beam

elements. Control system dynamics are imbedded into the same

equations so that model order reduction approximations are not

necessary. The input data consists of the physical data of the

elements and the topological information describing how the

elements are connected. PDEMOD (1) automatically assembles the

equations of motion for the entire structural model, (2) calculates the

modal frequencies, (3) calculates the mode shapes, (4) generates

perspective views of the mode shapes, and (5) forms selected
transfer functions.

The software PDEMOD continues to be developed to provide

additional features to assist in analyzing and synthesizing control and

structural systems for flexible spacecraft.
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Issues in Modeling Composite Structure

Finite Element Modeling

• Excessive Complexity

• Parameter Estimation is Difficult

Model Order Reduction Required for

Control Analysis

Distributed Parameter Modeling

• Fewer Model Parameters

• Parameter Estimation Straightforward

• Closed-Loop Stabilit5 rAnalysis does not

Require Order Reduction

The current practice of modeling flexible structures is to use finite

element modeling. It is then necessary to dispose of most of the

modal characteristics because of their inaccuracy. Damping is also

defined in an ad hoc manner. When designing a control law for such

a model it is necessary to iterate because of the order reduction

process. Also the number of model parameters is too great to allow

optimal parameter estimation.

The recommended alternative is to use distributed parameter

modeling. It is not necessary to reduce the order of the model since

the control system dynamics can be imbedded into the same

equation which represent the structural dynamics. Damping can be
included more accurately into the structural equations. The reduced

number of model parameters enables optimum parameter

estimation.
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Hurdles for P.D.E. Modeling

Ability to Generate P.D.E. Models

of Complex Structures

Accuracy of P.D.E. Models for

Different Types of Structure

Ability to Imbed Control/Structural

Dynamics

Before continuum or distributed parameter modeling can become a

viable alternative to finite element modeling, it is necessary to develop

software which will enable the modeling of complex structures. The

software, PDEMOD, can provide that capability. The software

continues to be developed to provide additional features.

It is also necessary to examine the accuracy of continuum models. The
number of example configurations continues to grow. The accuracy

can be equal to or better than that of finite element models.

Eventually, it will be possible to use both approaches in the same

software, thereby taking advantage of the features of both approaches.

It is valuable to control applications to imbed the control system

dynamics into the same equations for the structural dynamics. The
inaccuracies due to order reduction can then be avoided.
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The equations of motion are formulated in terms of the motion of
bodies attached to the ends of flexible beam elements. The

coordinates of a body are chosen to be those of one of the beams to
which it is attached. The reference beam axes remain fixed. When

the beam element deflects the body moves accordingly. Account must

be taken of both linear and angular deflection, however.

The acceleration of the body is then related to the sum of the forces
and moments that result from the attached beam elements.
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BODY # I

SCHEMATICI

BODY _2

BEAM _2

BODY #3

Three-dimensional configurations can

be modeled which are comprised of

rigid bodies and beams which deflect

laterally (two directions), longitudinally.

and twist.
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I Beam Model I

y(L)

X (L_,/z(L)

o_ T(L)

__o)

T(O)

The Moments and Forces at (0) in Beam Axes are-

Mx = Elyu_(O)

My = - EIxu_(O )

:
M z = EIyu¥(O)

F'x = EIyuy(O)

ry :

F'z = EAzu_(O)

The force and moment vectors are first expressed in terms of spatial

derivatives of the deflection of the beam element. After noting that

the beam deflections are functions of sinusoidal and hyperbolic

functions and their coefficients, the linear deflection, angular
deflection, and force and moment vectors are expressed in terms of a
vector of the beam deflection coefficients.
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Beam Deflection Function

Ux(z)=ax ÷ bxZ + Axsin(bxZ)+Bxcos(bx z)

+ Cxsinh(bxz) +Dxcosh(bxz)

Uy(Z)= ay + byZ + Aysin(byz).Bycos(byz)

+ Cysinh(byZ)+Dycosh(byz)

U¢(z)= a_+ A_s in(b_z )_B¥cos(byz )

Uz(Z)=a z + Azsin(bzz)+BzcoS(bzZ)

The shape of the beam super element can be expressed in terms of

sinusoidal and hyperbolic functions for lateral bending. The axial

elongation and torsion deformations require only sinusoidal terms.
This is true for general configurations which are comprised of such

super elements and rigid bodies as well. The introduction of slight

damping and dissipative control effects causes only slight errors, so
that sinusoidal and hyperbolic functions remain useful approximations
to the actual deformations.
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It is useful to express the linear and angular deflections, force and

moment as matrices multiplying a vector of the coeffecients of the

sinusoidal and hyperbolic finctions. The equations of motion, transfer

matrix, or the dynamic stiffness matrix can then be expressed in
terms of these matrices.
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.... Parlial I)illerenl.ial Equations

A similar result is ohlailled lot t.he ol.her hendinl,

equal ion.

miiy, I" lyUT= o

(_v")2 t ': l-ly
m 14

I:or I he elongation equal ion-

miiz , F,A,u_.: o
I!I

Similarly Ior I.he l.orsion equal.ion-

,iv

pl¥ii¥, E lq_J¥ : o

J)¥1. : __¥2

All oi Ihe "h" paramelers have heen related Io the

Irequency, m.

The beam equation relates the frequency to the [3 coefficients that

appear in the sinusoidal and hyperbolic beam deflection functions.
There are different relationships for bending in the x-z plane, bending

in the y-z plane, elongation along the z axis, and twisting about the z
axis.

The relationships are more complicated for the Timoshenko beam

equation, for a constant axial force, and for attached, smeared

appendages.
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Structural Damping /

Small levels of structural damping would not affect

ttle mode shapes for zero damping. It should be

possible to handle small levels of damping. Tile

mode shapes would become complex and tile eigen

values would have both real and complex parts.

Tile beam equation might be:

.H uM__mii- Cu + El 0

Tile string equation might be:

mii+ CO'- EAu H -- 0

Tile undamped mode shapes will be used as Galerkin

approximate damped mode shapes.
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I INPUT 1

• MASS + INERTIA
• STIFFNESS + DAMPING + CONTROL
• DIMENSIONS + TOPOLOGY

I OUTPUT )

• MODAL FREQUENCIES
• MODE SHAPES

• GRAPHICS
• TRANSFER FUNCTIONS

• SENSITIVITY FUNCTIONS
• MODAL PARTICIPATION

• OPTIMIZATION

The continuum modeling software PDEMOD forms the total system

equations from the input data of the mass, stiffness, damping, control

and geometrical information. The dynamics of the total system is

analyzed and particular responses and functional relationships can

then be generated.
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Models i
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Distributed Parameter Models

LACE Satellite

Multi-Hex

Prototype Experiment

Although a number of flexible spacecraft configurations have been
successfully modeled, additional models of the LACE Satellite, the

Multiple Hex Prototype Experiment and the Shuttle Remote

Manipulating System are being generated. By modeling more complex

configurations, the experience of continuum modeling and the

capabilities of the PDEMOD software will continue to grow.



Distributed Parameter Model /
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Station

Control

_L

Continuum Model of

Space Station-RMS-Space Shuttle
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The task of developing a continuum model of the Space Shuttle-RMS-

Space Station Freedom assembly configurations brings together all of

the modeling experience to date. Previous models of the Mini-MAST
truss, the Spacecraft Control Laboratory Experiment, and the Solar

Array Flight Experiment models will contribute to the complete model
of Station assembly. Similarly, the tasks of estimating the model

parameters are steps toward estimating the total model parameters of
the Station assembly model. The success of this task should serve as

an example of the power and usefulness of the distributed parameter

modeling approach.
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Concluding Remarks

* The use of Finite Element Modeling presents
Obstacles to Parameter Estimation and Optimization

* Partial Differential Equation Modeling Facilitates
Control/Structure Optimization

* P.D.E. Models have been Successfully Generated for
1. Spacecraft Control Laboratory Experiment
2. Solar Array Flight Experiment
3. Mini-MAST Truss

- P.D.E. Model Accuracy is Competitive with Finite
Element Models

The Software PDEMOD Enables Modeling Complex,
Flexible Spacecraft. PDEMOD Continues to be
Developed, is being Applied to:

1. Evolutionary Model Experiment
2. Space Station Scaled Model
3. LACE Satellite
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